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Abstract

Autism spectrum disorders (ASD) embrace a diverse set of neurodevelopmental diseases with a multifaceted genetic basis.
Non-coding RNAs (ncRNAs) are among putative loci with critical participation in the development of ASD. Expression
of some IncRNAs, namely RP11-466P24.2, SYP-AS1, STXBP5-AS1, and IFNG-AS1 has been decreased in ASD, while
AK128569, CTD-2516F10.2, MSNP1AS, RPS10P2-AS1, LINC00693, LINC00689, NEAT1, TUGI, and Shank2-AS IncR-
NAs have been over-expressed in ASD. Expression of several miRNAs which are implicated in the immunological devel-
opmental, immune responses, and protein synthesis as well as those participating in the regulation of PI3K/Akt/mTOR and
EGEFR signaling pathways is dysregulated in the context of ASD. In the present article, we describe investigations which

appraised the role of IncRNAs, miRNAs, and circRNAs in the pathobiology of ASD.
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Introduction

Autism spectrum disorders (ASD) encompass a mixed set
of neurodevelopmental diseases with a multifaceted genetic
foundation. ASD is diagnosed by substantial debit in mutual
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three (2013). The substantially high rate concordance among
monozygotic twins and elevated risk of disorder for siblings
of ASD cases suggest the presence of a remarkable genetic
basis for ASD (Rosenberg et al. 2009; Ozonoff et al. 2011).
Non-coding RNAs (ncRNAs) are among putative loci with
critical participation in the development of ASD (Cogill
et al. 2018). These transcripts exert regulatory impacts on the
expression of several genes particularly those implicated in the
neurodevelopmental processes (Roberts et al. 2014). These
regulatory transcripts vary in the terms of size, biogenesis, and
mechanism of action. While long non-coding RNAs (IncRNAs)
are more than 200 nucleotides, microRNAs (miRNAs) are small-
sized transcripts with sizes about 20-22 nucleotides (Esteller
2011). Through functioning as signal, molecular sponges,
platforms, directors, or enhancer RNAs, IncRNAs affect
genome structure or gene expression (Fang and Fullwood 2016).
LncRNAs have some similar features with mRNAs among them
are transcription by RNA polymerase II and existence of poly
A tails and caps at the 3" and 5’ ends, respectively (Kashi et al.
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2016). On the other hand, miRNAs are made through a multi-
step route in the nucleus and cytoplasm and alter expression of
their targets through binding with their 3" untranslated regions.
Therefore, they mainly alter expression of genes at post-
transcriptional level (Macfarlane and Murphy 2010). Another
newly appreciated group of ncRNAs consisted circular RNAs
(circRNAs). These closed IncRNAs are constructed through
covalent binding of the 5’ and 3’ ends (Yu and Kuo 2019).
Assessment of transcript profile and co-expression network of
transcripts in the evolving brain tissue has led to identification
of some IncRNAs which are linked with the development of
ASD. These IncRNAs are enriched in two separate clusters
with over-expression in the prenatal and postnatal periods,
respectively. The former cluster mostly included transcriptional
regulators, whereas the latter comprised those being implicated
in the synapse establishment (Cogill et al. 2018). Other groups
of ncRNAs are also associated in the pathogenesis of ASD. In
the present article, we explain investigations which appraised the
role of IncRNAs, miRNAs, and circRNAs in the pathobiology
of ASD.

LncRNAs and ASD

Ziats et al. profiled IncRNA and mRNA signatures in the post-
mortem brain samples of ASD patients versus control samples
of prefrontal cortex and cerebellum regions. They reported
differential expression of tens of IncRNAs in ASD samples
versus controls. These IncRNAs were mostly associated with
neurodevelopmental processes and psychiatric disorders. Nota-
bly, IncRNA signature of ASD brains was more homogenous
compared with controls (Ziats and Rennert 2013). Another
high-throughput study conducted by Wang et al. showed dif-
ferential expression of thousands of IncRNAs in the periph-
eral leukocytes of ASD cases compared to controls. These
IncRNAs were functionally linked with neurological pathways
such as synaptic vesicle trafficking, continuing depression, and
persistent potentiation. Based on prominent dysregulation
of synaptic IncRNAs and their associated mRNAs in ASD
cases, synaptic vesicle transport and trafficking has putative
role in the pathogenesis of ASD. Among dysregulated IncR-
NAs are those related with HOX genes. Most notably, two
natural antisense transcripts (NATs), namely SHANK?2-AS
and BDNF-AS, have been identified that possibly modulate
expression of the sense transcripts with well-known roles in
the development of ASD (Wang et al. 2015b). Consistent with
the possible role of NATSs in the regulation of human tran-
scripts, another study has reported under-expression of [FNG-
AS1 while over-expression of IFNG in ASD cases compared
with healthy children. The mentioned study also emphasized
on the role of chronic inflammation in the pathophysiology
of ASD (Fallah et al. 2020). MSNP1AS is an over-expressed
IncRNA in the autopsy samples obtained from cerebral cortex
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of ASD cases, especially those having ASD-related 5p14.1
markers (Kerin et al. 2012b). Upregulation of MSNP1AS in
human neural progenitor cells has led to reduction in neurite
quantities and neurite dimension. Such morphological changes
were accompanied by alterations in the expressions of a num-
ber of proteins implicated in protein biogenesis and chromatin
configuration (DeWitt et al. 2016b). Encoded from an intronic
region of the protein-coding MACROD2, RPS10P2-AS1 com-
prises a risk element for ASD, namely rs4141463. Expression
of this IncRNA has been shown to be higher in temporal cor-
tex of ASD cases, particularly in those with the ASD-linked
rs4141463 genotype. Besides, RPS10P2-AS1 levels were
elevated in human neural progenitor cells following expo-
sure with air poisons. Such upregulation was accompanied by
aberrant expression of neuronal genes (Bilinovich et al. 2019).
Another high throughput study has shown dysregulation of a
number of primate-specific IncRNAs in ASD in addition to
under-expression of the alternative splicing of activity-related
neuron-specific exons (Parikshak et al. 2016). A candidate-
gene study has appraised expression levels of NEAT1, TUGI,
and PANDA in the peripheral blood samples of ASD cases
compared with healthy children showing over-expression of
first two IncRNAs in the ASD cases (Sayad et al. 2019). Fea-
tures of downregulated and upregulated IncRNAs in ASD are
presented in Tables 1 and 2, respectively.

Association between IncRNA genetic variants and sus-
ceptibility to ASD has also been assessed. Safari et al.
have genotyped four HOTAIR polymorphisms, namely
rs12826786, rs1899663, and rs4759314 in Iranian ASD
patients and healthy controls. They recognized associa-
tion between T allele of the rs12826786 and susceptibility
to ASD. TT genotype of this SNP enhanced risk of ASD
compared with the other genotypes. Yet, no association was
detected between the other SNPs and susceptibility to ASD.
Moreover, distribution of HOTAIR haplotypes was similar
among cases and controls (Safari et al. 2020).

Peripheral expression levels of IncRNAs have the poten-
tial to be used as markers for the purpose of ASD diagnosis.
A single investigation has reported the diagnostic accuracy
of NEAT1 in distinguishing between ASD and normal chil-
dren to be 0.75. Diagnostic power of PANDA and TUG1 has
been less than NEAT1 (Sayad et al. 2019). Table 3 demon-
strates the specificity and sensitivity values of these three
IncRNAs in ASD.

miRNAs and ASD

Hick et al. have quantified miRNA signature in saliva samples
of ASD patients, children with typical development, and those
with developmental delay. They reported differential expression
of 14 miRNAs between three study subgroups. Different panels
of miRNAs were identified that could distinguish ASD cases
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Table 3 Diagnostic value of LncRNAs in autism spectrum disorder (ASD)

LncRNA Specimens Distinguishing ability Area under curve Sensitivity Specificity Reference
NEAT1 30 ASD patients and 41 ASD and healthy indi- 0.759 70 75.61 (Sayad et al. 2019)
PANDA age- and sex-matched viduals 0.628 90 36.59
TUGI healthy controls 0.733 7661 6585
CCAT1 30 ASD patients and 41 ASD and healthy indi- 0.663 53.33 82.93 (Taheri et al. 2021b)
CCAT2 age- and sex-matched viduals 0.779 86.67 73.17
healthy controls
MEG3 30 ASD patients and 41 ASD and healthy indi- 0.792 83.33 70.73 (Taheri et al. 2021a)
age- and sex-matched viduals
healthy controls
DISC2 30 ASD patients and 41 ASD and healthy indi- 0.763 83.33 73.17 (Tamizkar et al. 2021)
LOC101928237 age- and sex-matched viduals 0.9 90 82.93
LRRC2-AS1 healthy controls 0.929 86.67 100
PRKAR2A-AS1 0.794 86.67 78.05
SNHG6 30 ASD patients and 41 ASD and healthy indi- 0.94 60 73.17 (Ghafouri-Fard et al.
CYP27B1 age- and sex-matched viduals 0.78 93.33 70.73 2021)
VDR healthy controls 052 90 2927

from children without ASD with appropriate accuracy, whose
expressions were linked with social affect, or stereotypic
behavior, respectively. Thus, salivary miRNA profiling has been
proposed as a non-invasive method for ASD diagnosis (Hicks
et al. 2020). Vaccaro et al. have identified different patterns
of seven miRNAs in the blood samples of ASD cases versus
controls. These miRNAs mainly target genes which contribute
to the development of immune system, immune reactions, and
protein biogenesis. Notably, MeCP2 gene which participates in
the pathogenesis of Rett syndrome is a target of one of these
miRNAs, explaining the presence of ASD-related symptoms
in Rett syndrome (Vaccaro et al. 2018). Nakata et al. have
quantified miRNA signature in peripheral blood of a subgroup
of ASD cases versus healthy subjects. They reported substantial
downregulation of miR-6126 in ASD cases in association with
the seriousness of social abnormalities. This miRNNA possibly
targets a number of genes participating in the synaptic functions
and oxytocin signaling pathways (Nakata et al. 2019). Nt et al.
have measured peripheral expression of miR-328-3p and miR-
3135a in ASD cases and matched controls. They recognized
downregulation of these miRNAs in ASD patients. These
miRNAs were predicated to regulate expression of genes with
functions in synaptic pathways and neurodegenerative disorders
including Alzheimer, Huntington, and Parkinson disorders (Nt
et al. 2018). Wu et al. have shown upregulation of hsa-miR-
21-3p and downregulation of its target genes in autopsy brain
tissues of ASD cases. Moreover, expression of hsa_can_1002-m
was decreased in ASD. The latter miRNA has been shown to
modulate activity of EGFR and FGFR signaling pathways which
participate in the development of brain and immune system (Wu
et al. 2016). Nguyen et al. have assessed expression of miR-
146a in the temporal lobe samples of patients with ASD. They
demonstrated that over-expression of this miRNA in ASD

@ Springer

brains happened early in the childhood. In vitro experiments
revealed the impact of miR-146a upregulation in enhancement
neurite outgrowth. Therefore, miR-146a has a dynamic
participation in primary neuronal developmental processes in
ASD (Nguyen et al. 2018). Finally, Mor et al. have reported
upregulation of miR-142-5p, miR-142-3p, miR-451a, miR-
144-3p, and miR-21-5p in the brain tissues of ASD patients.
Besides, they demonstrated hypomethylation of the promoter of
the miR-142 gene in these specimens. Dysregulated miRNAs
have been predicted to affect expression of genes contributing
to the synaptic processes. Moreover, miR-451a and miR-21-5p
have been shown to target the oxytocin receptor gene whose
expression has been enhanced in the assessed brain specimens.
miR-21-5p has been suggested to decrease expression of
oxytocin receptor gene in the brain sections of ASD patients
(Mor et al. 2015). Serum profiling of miRNAs in ASD children
has also demonstrated downregulation of miR-19a-3p, miR-
361-5p, miR-3613-3p, miR-150-5p, miR-126-3p, and miR-
499a-5p in these subjects compared with normal children.
Notably, expression of these miRNAs have been lower in the
clinically normal parents of these ASD subjects and in their
siblings compared with genetically unrelated healthy subjects.
Consistently, expression of these miRNAs have been shown
to be decreased in the blood, hypothalamus, and sperm of two
animal models of ASD (Ozkul et al. 2020b). Another similar
study has revealed differential expression of 13 miRNAs
between ASD cases and healthy children, five of them showing
appropriate predictive value for recognition of ASD cases (Vasu
et al. 2014). Figure 1 shows the underlying mechanism of miR-
199a-5p, miR-92a-2-5p, and miR-193a roles in ASD.

Tables 4 and 5 provide a summary of investigations which
identified decreased or increased levels of miRNAs in ASD,
respectively.
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miRNA expression profiling has facilitated ASD diag-
nosis. miR-328-3p has a suitable diagnostic value in this
regard (Table 6).

circRNAs and ASD

CircRNAs are a group of stable IncRNAs with high expres-
sion in neural tissues of mammalian species (Rybak-Wolf
etal. 2015). A genome-wide expression assessment of these
transcripts in autopsied brains samples obtained from ASD
cases and controls showed altered expression of 60 circR-
NAs in ASD patients. Integrative assessment of circRNA,
miRNA, and mRNA patterns has resulted in the recognition
of thousands of interactions between these three kinds of
transcripts among them have been ASD risk genes and those
coding inhibitory postsynaptic density molecules. One over-
expressed circRNA, namely, circARID1A, has been shown
to affect expression of a number of ASD risk genes in neu-
rons through acting as a sponge for miR-204-3p. The large

set of ASD-related circRNA and their interactions with ASD
risk genes implies the role of circRNAs in the development
of ASD (Chen et al. 2020b).

Discussion

The crosstalk between mRNAs, miRNAs, IncRNAs, and
circRNAs indicates the existence of a network which plays
a critical role in brain development (Yuan et al. 2018). Sev-
eral studies, particularly genome-wide investigations, have
demonstrated abnormal expression of ncRNAs in brain to
peripheral blood samples of ASD children as compared with
normally developing kids. The latter types of studies also
indicate the putative biomarker role of these transcripts. This
finding has practical significance in the diagnosis of ASD
considering the difficulties in the assessment of children par-
ticularly under 3 years old. Dysregulated ncRNAs in ASD
tissues have been enriched in immune-related pathways, syn-
aptic vesicle trafficking protein biogenesis, and chromatin
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et al. 2018)
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Table 6 Diagnostic value of microRNAs in autism spectrum disorder (ASD)

microRNA Specimens Distinguishing ability ~ Area under curve Sensitivity Specificity Reference
miR-3135a 30 ASD patients ASD patients and nor- 0.828 76.3% 88.9% (Ntetal. 2018)
miR-328-3p and 30 age- and mal individuals 0.858 78.9% 88.9%
sex-matched normal
controls
miR-28-3p, miR-151- 187 ASD children, 125 ASD patients and nor- 0.694 89.2% 32.0% (Hicks et al. 2020)
a-3p, miR-148a-5p, children with typical mal individuals
and miR-125b-2-3p development, and 69
cases of developmen-
tal delay
hsa-miR-101-3p 55 ASD patients and ASD patients and nor- 0.686 66.7% 72.2% (Vasu et al. 2014)
hsa-miR-106b-5p 55 age- and sex- mal individuals 0.648 43.4% 81.8%
hsa-miR-130a-3p matched healthy 0.852 85.5%  12.7%
controls
hsa-miR-151a-3p 0.756 98.1% 40.8%
hsa-miR-181b-5p 0.868 85.4% 78%
hsa-miR-195-5p 0.675 55.6% 72.7%
hsa-miR-19b-3p 0.822 79.6% 80%
hsa-miR-320a 0.906 84.6% 87%
hsa-miR-328 0.767 82.7% 64.6%
hsa-miR-433 0.723 52% 85.7%
hsa-miR-489 0.803 90.2% 68.1%
hsa-miR-572 0.822 83.3% 74.5%
hsa-miR-663a 0.743 84.9% 61.7%
miR-424-5p 30 ASD patients and ASD patients and nor- 0.756 88.9 75.0 (Kichukova et al. 2021)
miR-500a-5p 30 age- and sex- mal individuals 0.796 77.8 92.9
miR-197-5p matched healthy 0.825 86.1 78.6
controls
miR-664-3p <0.7 25.0 100

configuration, introducing these pathways as possible can-
didates for therapeutic interventions in ASD.

Spatio-temporal expression of miRNAs in brain is crucial
for the development of the central nervous system (Cho et al.
2020, Chen and Qin 2015, Yapijakis 2020, Davis et al. 2015).
Dysregulated miRNAs are related with several neurological
and psychological disorders (Yoshino et al. 2020; Brennan
and Henshall 2020; Hu et al. 2019; Siedlecki-Wullich et al.
2019). Animal model studies showed that the synaptogenesis
is influenced by miRNAs controlling neurotransmitter release
or targeting synaptic proteins like neuroligin and neurexin as
two candidate genes which are strongly associated with ASD
(Simon et al. 2008; Hu et al. 2012, Siidhof 2008). miRNAs
have special position in the diagnosis of ASD. These tran-
scripts have distinct signature in saliva or serum samples of
ASD patients, therefore can be used as non-invasive methods
for ASD diagnosis. In addition to miRNA profiling, multi-
“omic” profiling methods have been suggested as practical
methods for enhancement of accuracy of diagnosis, facili-
tating their application in the clinical settings (Hicks et al.
2020).

Besides, tissue-specific expression of IncRNAs especially
the restricted expression of some of them in the brain

suggested IncRNAs as the other contributors in the brain
development (Derrien et al. 2012). LncRNA expression
profiling suggested the aberrant expression of IncRNAs
as critical determinant of different neurological disorders
(Ding et al. 2020). Particularly, an evolutionarily conserved
mRNA/IncRNA co-expression network, enriched for coding
genes involved in synaptic functions, confirms the role of
IncRNAs in the etiology of ASD as a synaptopathy (Won
et al. 2013; Necsulea et al. 2014; Quesnel-Vallieres et al.
2019). In addition to the mentioned evidence regarding
dysregulation of IncRNAs in ASD brains as well as the
results of functional studies, the higher abundance of
IncRNAs in human brain than mRNAs suggests that
IncRNAs are putative partakers in the development of
ASD (16). Loci that confer risk of ASD might affect gene
expression patterns in the cortical region. Notably, various
genetic abnormalities can result in phenotypic convergence
at numerous physiopathological levels in the context of
ASD (17). Most notably, among several differentially
expressed IncRNAs in ASD blood samples, the upregulated
SHANK2-AS as an intronic antisense for SHANK?2 gene is of
great interest (Wang et al. 2015a). Several studies reported
rare causative mutations in this gene which categorize it

@ Springer
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as a syndromic candidate gene for ASD (Berkel et al.
2010; Sanders et al. 2012; Monteiro and Feng 2017).
The functional analysis also confirms the effects of such
mutations on protein localization, synaptic function, and
cognitive behavior in mice models (Berkel et al. 2012;
Leblond et al. 2012; Zaslavsky et al. 2019). Therefore,
detected upregulation of the SHANK2-AS, which leads to
altered expression of Shank2 in ASD patients and results in
abnormal neuronal structure and growth, may highlight the
underlying epigenetic mechanisms involved in the etiology
of the ASD (Wang et al. 2015a; Luo et al. 2019).

The other form of non-coding RNAs are circRNAs
which are produced as a by-product of the splicing process
by circularization of exons into a covalently closed loop.
These transcripts have spatiotemporal dynamic expression
in the brain from embryonic stages to adulthood (Veng et al.
2015; Mehta et al. 2020). Most circRNAs are enriched in
the synapses suggesting their role in the synaptic plasticity
and brain function (Hanan et al. 2017) and explaining their
link with ASD development (Chen et al. 2020a). Appraisal
of association between genetic polymorphism of IncRNAs,
miRNAs, and circRNAs and risk of ASD through genome-
wide studies would facilitate identification of genetic abnor-
malities which lead to similar phenotypes.

Conclusion

Preliminary results have indicated the association between
altered ncRNA signatures in ASD and some neurodegenera-
tive conditions suggesting the possible shared mechanisms
for these disorders. Comparative high-throughput sequenc-
ing studies in these disorders might facilitate identification
of such common molecular basis.

Abbreviations ASD: Autism spectrum disorders (ASD); ncR-
NAs: Non-coding RNAs; miRNAs: MicroRNAs; circRNAs: Circular
RNAs; NATs: Natural antisense transcripts
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